WaveBPS
All DocsProductsLearning CenterSupport
  • Introducing WaveBPS: Portable Low level analog serial data analysis
  • Getting Data into WaveBPS
    • WaveBPS Import Data Video
  • Live Capture with WaveBPS
  • Navigation
  • Advanced Analysis
  • Automated Test with WaveBPS
  • WaveBPS Basic Databases
  • Cursor Measurements
  • Event List Columns
  • Setting up Serial Decoding in WaveBPS
  • Loading custom data into WaveBPS
  • Exporting Waveforms from WaveBPS
  • Scalar Measurement List
  • Licensing WaveBPS
  • WBPS Binary File Format
    • Double Precision Format
    • Unsigned short Format
  • CAN / CAN FD Bus
    • CAN / CAN FD Bus Bit Stuffing
    • CAN / CAN FD Bus Data Frame
    • CAN / CAN FD Bus Errors
    • Extended Data Frames
    • CAN / CAN FD Bus Physical Layers
    • CAN / CAN FD Bus Remote Data Frame
    • Single Wire CAN / CAN FD
  • FlexRay
    • FlexRay Dynamic Frame
    • FlexRay Static Frame
    • FlexRay Startup
    • FlexRay Wakeup Symbol
    • FlexRay Physical Layer
  • Example Waveforms
    • FlexRay versus CAN / CAN FD BUS
    • CAN / CAN FD bus at 70 % utilization 120 megasamples
    • CAN / CAN FD Bus Waveform Decoding
    • FlexRay Frame Decode
    • FlexRay Dynamic Frame
    • LIN Bus Decode
    • Low Speed Fault Tolerant CAN / CAN FD Waveform
  • LIN Bus
    • LIN Errors
    • LIN Frame
    • LIN Header
    • LIN Slave Section
  • Other Buses
    • UART: K-Line, J1708, ISO9141, GM CGI, RS232
    • SPI bus
    • I2C or SMBus
    • J1850
  • Compare FlexRay, CAN / CAN FD bus and LIN Bus
  • WaveBPS Video Links
  • Specifications
Powered by GitBook
LogoLogo

Applications

  • Cybersecurity
  • Data Logging
  • Simulate ECU Functions
  • Diagnostics, Testing and Validation

Products

  • Vehicle Network Adapters
  • Data Loggers
  • Software
  • Automotive Ethernet Tools

Support

  • Support Resources
  • Contact Support
  • Class Schedule & Registration
  • Training Video Library

Company

  • About
  • News
  • Events
  • Contact Us

Copyright © 2025 | All Rights Reserved

On this page
  1. FlexRay

FlexRay Startup

PreviousFlexRay Static FrameNextFlexRay Wakeup Symbol

Last updated 11 months ago

The FlexRay startup process involves getting all the nodes from not communicating to communicating. This involves specific nodes, called cold start nodes, to begin the communication in a specific way to get the network time synchronized. After this procedure the normal FlexRay communication begins.

When a node determines that both FlexRay channels have , the leading cold start node will issue the Collision Avoidance Symbol (CAS) as shown below. Also shown below, the leading cold start node will begin its communication cycle starting with cycle 0. After enough cycles occur the other cold start nodes will time synchronize to the leading cold start node and begin their communication cycles. After the cold start nodes other non cold start nodes join and the normal FlexRay cycle begins.

woken up
Here a FlexRay startup is shown with a Leading cold start node generating the CAS and first few cycles with the second node joining the network on cycle 4.